明纬的多组输出电源供应器(例如2组输出或者更多组),有最小负载的要求。故特别建议在使用之前,能详读产品规格书。多组输出电源供应器为了能正常运作,各组输出尚有最低电流之需求,否则输出电压将会不稳定,或者超出定义的电压误差范围。此最小负载要求可以参考规格书中的”电流范围”,如下表所示:CH1需要2A的最小电流消耗,CH2 需要0.5A,CH3需要0.1A, CH4则最低可以0A。
交换式电源供应器在输入电源送电的瞬间会出现一短暂(1/2~1电源周期,EX:60Hz电源1/120~1/60秒)的大电流(依产品设计约为20~100A,请参考产品规格书),产品开机之后便恢复正常电流输入,每次都在电源输入端送电的瞬间才会出现,此为正常现象,并不会造成电源供应器的损坏。但不建议持续对电源供应器开机/关机。另应注意,如果使用多台电源供应器同时间开机时,有可能会造成系统配电的保护开关跳脱动作,建议多台电源供应器应间隔逐一开启,或采用电源产品的遥控功能进行产品开/关机。
PFC(Power Factor Correction)功率因子矫正,主要为改善电源供应器AC输入端有效功率与视在功率的比值。一般不含PFC线路的机型,其输入端的功率因子只有0.4~0.6,而具有主动式PFC线路则可以达0.9以上,其相关式如下: 视在功率 = 输入电压 x 输入电流(VA) 有效功率 = 输入电压 x 输入电流 x 功率因子(W)
以环保的观点:电力公司发电厂必须产生大于视在功率的电能,其发电机组才可以稳定供给市场电能需求,而电能的实际使用则是有效功率。如果功率因子为0.5,表示发电机组发出大于2VA电力,才能安全供给电能1W的需求,其能源运作效益差。反之,若功率因子改善为0.95,则电力公司发电机组只要发出大于1.06VA电力,供给电能1W的需求便无问题,能源的运作效益较佳。
主动式PFC依线路架构可分为单级PFC与双级PFC,其比较可参考下表。
PFC架构 | 优点 | 缺点 | 应用限制 |
单级PFC | 成本低 线路简单 小功率效率高 | Ripple 过大 回授不易调整影响PF | 1.无Hold up time对AC电源端变化直接影响输出 2.较高的Ripple current易影响 LED灯具寿命(直接驱 动使用) 3.回授响应慢, 负载特性影响大 |
双级PFC | 高功率设计 PFC特性佳 回授补偿易于调整 负载特性佳 | 成本高 线路复杂 | 同一般电源可应用于多数环境, 无特别限制 |
COM (COMMON) 指共地,明纬产品标示依其输出的属性说明如下:
单组输出:正极(+V),负极(-V)
多组输出(共地):正极(+V1,+V2.),负极(COM)
a. 85~264VAC;120~370VDC
b.176~264VAC;250~370VDC
c.85~132VAC/176~264VAC by Switch; 250~370VDC
- 产品规格书标示上述a、b项输入电源范围时,不论是送交流电或直流电其电源供应器均能正常作。但另需留意部份机型设计上直接电源输入正极(+)接AC/L,负极(-)接AC/N电源供应器才能开机;部份机型则是正极接AC/N,负极接AC/L才能开机,如果配线错误只是不开机,将其反接便能正常工作,而电源供应器不会有其他问题。
- 产品规格书标示为上述c项,必须将115/230V切换开关切至”230V”位置才能输入250~370VDC,如果切换开关位置在”115V”而送入250~370VDC则会造成电源供应器的损毁,务必留意。
MTBF和Life Cycle均是产品信赖性的重要指针。 目前MTBF 较常使用的预估方法为零件计数法(Part count)及应力分析法(Stress Analysis),所依循的法规最主要有
MIL-HDBK-217F Notice 2 及TELCORDIA SR/TR-332(Bellcore),其中MIL-HDBK-217F Notice 2 为美国军规而TELCORDIA SR/TR-332(Bellcore)为一般商规。目前本公司仍以MIL-HDBK-217F Notice 2(Stress Analysis) 为计算依循之法规。 所谓MTBF(Mean Time Between Failure)平均失效时间为可靠度预估的期望值,指产品在连续工作一段时间后,其可靠度降至36.8%的平均时间。明纬MTBF目前是采用MIL-HDBK-217F标准,以应力分析法预估产品可靠度的期望值(不含风扇),系指该产品在连续使用到达所计数的时间后,仍能正常工作的或然率为36.8%(e-1=0.368)。若产品连续使用所计数MTBF的两倍时间,其仍能正常工作的或然率则是13.5%(e-2=0.135)。而Life Cycle则是单指该产品的电解电容在最高工作环温条件下之温升,计算其电解电容寿命的参考值。例如产品RSP-750-24 MTBF=109.1K小时(25°C),产品内部C110电容 Life Cycle= 213K小时(Ta=50°C)。
DMTBF(Demonstration Mean Time Between Failure)实证平均故障时间,是验证MTBF的一种方式。请参考以下算式来计算总验证时间。
总验证时间 |
其中
MTBF:平均失效时间
X2:可由卡方分布表中查表得到数据
N:取样数
AF:加速因子,可由加速因子的公式计算而得到数据
Ae=0.6
K(Boltzmann Constant)=8.625 * 10-5(eV/k)
T1:指规格的额定温度;在计算时以绝对温度计算
T2:是指验证时为了加速,而采用的温度;在计算时以绝对温度计算。但此温度不得造成产品有任何物理性质的变化。
某些电源供应器在开机、关机时会送出”Power Good”或”Power Fail”讯号做为监测控制用。
Power Good:指输出达到90%额定电压后延迟数十至数百ms 后送出一TTL 讯号。
Power Fail:指输出低于90%额定电压前,提前1ms 以上将TTL 讯号关闭。
根据不同国家的市电电压,110VAC版本的TN-1500逆变器,其输出可以被改变为100/110/115/120VAC,同样的220VAC版本的TN-1500逆变器,其输出可以被改变为200/220/230/240VAC。当逆变器被设定在UPS模式,且市电电压的波动超过AC输出电压设定值的±15%,此时逆变器的电力来源将会从市电切换至电池,以维持AC输出电压的精准度;同时将会关闭前面板的AC IN 指示灯。
电源输出电流超出额定电流时,保护电路动作使降低或切断输出功率。
过电流特性分为下列几种:
保护方式:
(1)FOLDBACK CURRENT LIMITING
过负载时输出电流能力会下降,一般约下降至20%额定电流以下,如图中曲线a。
(2)CONSTANT CURRENT LIMITING
过负载时电流保持于定义范围内,而输出电压会下降,如图中曲线b。
(3)OVER POWER LIMITING
过负载时电流愈高,电压依比例愈低,如图中曲线c。
(4)HICCUP CURRENT LIMITING
过负载时,电压、电流快速下降并切断输出,但会自动回复。
(5)SHUT OFF
过负载时会切断输出,输出电压与输出电流趋近于零。
回复方式:
(1)解除过电流(过负载)状态后,自动回复(Auto Recovery)。
(2)解除过电流(过负载)状态后,重新启动(Re-Power-On)。
注意事项:请避免长期的过载或短路,会造成电源供应器寿命减短或损坏。部份机型的过载或短路保护设计复合型态,其保护方式如上述先定电流限制(或Foldback Current Limiting 或Over Power Limiting)于若干时间后再进入关机(或Hiccup Current Limiting)。
S.P.S.在输出直流电压上所含有的交流成分,其波形如下:
在S.P.S.涟波噪声中含有2 种成分,一是交流输入电压的倍频频率,另一为S.P.S.本身的切换频率。由于是高频噪声,在量测时,示波器带宽应设在20MHz,且探棒应以最短距离来量测;并在待测端加一小电容(0.1uF)来滤除噪声干扰,如下图所示。
>
明纬电源防尘防水的设计,主要是依据IEC60529国际标准,相关标准内容描述如下表:
(注:IP64等级以上机型,适用于室内潮湿或户外有雨遮之场合)
*IP64-IP66等级机型,适用于室内潮湿环境或户外有雨遮之场所,实际安装相关限制要求,请参考IP等级测试之定义。
*所有产品并无法长时间置于水中。
*明纬IP68的定义为待测品置于水面下1米,执行动态测试1个月。
动态测试:执行12小时AC TURN ON;12小时AC TURN OFF的烧机测试。
- 依客户系统需求与应用方式决定适合的瓦数,包含欲设计之功率安全余裕度,并考虑系统之驱动方式设计。
- 利用明纬电源供应器「直接驱动」LED灯具,选择要点可参阅问题(A2)与(A3)
- 利用明纬电源供应器,搭配恒定电流源之LED驱动IC,以达到更精确的定电流驱动,选择要点可参阅问题(A2)与(A3)。
- 确认LED电源供应器的工作环境,以选用合适之防水防尘(IP)等级,或是合适的机型结构(金属壳、塑料壳、PCB式)。
- 是否需具备功率因子矫正(PFC)功能: 采用单级PFC架构之机型仅可使用于LED负载,而采双级PFC架构者则可泛用于一般负载。
- 若系统设计采电源供应器直接驱动LED,是否需要可调整输出电压/电流之机型,或是具备调光功能(dimming)之机型。
- 灯具系统采直接驱动设计
- LED工作电压范围上下限串接总合都需要在LED电源供应器输出电压范围内,例如LED规格为3.4~3.6V,使用6串的串接电压为20.4~21.6V,此时就要选择输出为24V(定电流区间18~24V)的机型。
- 具功因矫正功能机型,PF值如要求需大于0.9,负载需大于规格书PFC定义范围,功率因子与输出负载关系如图(1)所示,会依机型定义不同,一般设计值为75% LOAD以上。
- 如果使用在输入电压不稳定场所,如使用发电机设备或使用在重工业区,请选择表一中〝一般泛用型〞产品。
- 灯具系统采恒流IC设计
- 驱动IC的启动电压设计需接近LED电源供应器的输出电压。
- 驱动IC对于电压稳定度要求较高,建议采用表一中〝一般泛用型〞产品。
- 具功因矫正功能机型,负载需大于规格书PFC定义范围,功率因子与输出负载关系如图(1)所示,会依机型定义不同,一般设计值为75% LOAD以上。
- 使用驱动IC有可能会产生EMI搭配问题,灯具设计完成需再确认EMI,如有EMI问题可参阅LED电源供应器应用问题(11)。
如图(11)(12)所示,于〝DIM+〞与〝DIM-〞间加入直流电压控制(D Type)或PWM控制讯号(P Type),便可藉由调整电源供应器输出电流进而控制LED电流,由于此控制讯号与输出电流并非直接呈线性关系且有一定的误差,建议应用在不要求精确度的调光控制。
欲修改输出电压电流的客户可参考表一”明纬LED电源供应器产品比较表”中V/I调整字段,依调整电压、电流需求选择LED电源供应器,调整范围请参阅产品规格书。明纬LED电源供应器的输出电压、电流微调是经由内部可变电阻进行调整,除PLN与ELN系列机型需如图(9)拆上盖,由SVR1/SVR2调整,其于都可直接如图(10)由外壳上之Io ADJ、Vo ADJ孔位调整。另外调整电压、电流后,需确认总输出功率不可大于输出额定值,也要确认调整后上盖与防水塞都需组装确实。
明纬LED电源多具备有防尘防水设计,主要系依据IEC60529 国际标准,内容描述如下表:
*IP64-IP66等級機型,適用於室內潮溼環境或戶外有雨遮之場所,實際安裝相關限制要求,請參考IP等級測試之定義。
*所有產品並無法長時間置於水中。
最主要差异是0~10V可以用调光器做到将LED电源输出关闭,1~10V最低只能做到10%调光。
明纬LED电源产品输出电流误差以spec. 定义为主,纯定电流机型请参阅spec.电流精度,定电压+定电流机型请参阅spec.过电流保护范围。
主动式功因修正电路可分为单级式及双级式两种,单级式电源转换器是将前级功因修正电路与后级直 流对直流转换器线路整合一起,双级式则是采分开设计,相较于单级式转换器,双级式架构较复杂、成本较高,但单级式转换器有容易受输入电源质量不良影响与输出连波过大的缺点,所以单级式只适用于输入电压稳定场合的LED驱动应用,双级式可用于严苛环境的LED驱动或可以视为一般电源应用。
LED 产品规格书都有V-I特性曲线,依曲线说明可分”定电流”与”定电流+定电压”两种,定电流机型仅适用于LED应用,定电流+定电压机型适用于LED或一般应用,非适用于LED驱动区间会以虚线表示,依保护方式可分为打嗝与定电流模式,其区间只表示此电流特性,无定义电流值误差,如果客户需求为不希望有过高短路电流可选择此区间保护模式是打嗝模式机型,如有马达或电容性负载应 用, 可选择此区间保护模式是定电流机型。